

NAME: _____

Oxidation Numbers Worksheet

Directions: Use the *Rules for Assigning Oxidation Numbers* to determine the oxidation number assigned to each element in each of the given chemical formulas.

	Formula	Element and Oxidation Number		
1.	Cl ₂	Cl		
2.	Cl ⁻	Cl		
3.	Na	Na		
4.	Na ⁺	Na		
5.	O ₂	O		
6.	N ₂	N		
7.	Al ⁺³	Al		
8.	H ₂ O	H	O	
9.	NO ₃ ⁻	N	O	
10.	NO ₂	N	O	
11.	Cr ₂ O ₇ ²⁻	Cr	O	
12.	KCl	K	Cl	
13.	NH ₃	N	H	
14.	CaH ₂	Ca	H	
15.	SO ₄ ²⁻	S	O	

	Formula	Element and Oxidation Number		
16.	Na ₂ O ₂	Na	O	
17.	SiO ₂	Si	O	
18.	CaCl ₂	Ca	Cl	
19.	PO ₄ ³⁻	P	O	
20.	MnO ₂	Mn	O	
21.	FeO	Fe	O	
22.	Fe ₂ O ₃	Fe	O	
23.	H ₂ O ₂	H	O	
24.	CaO	Ca	O	
25.	H ₂ S	H	S	
26.	H ₂ SO ₄	H	S	O
27.	NH ₄ Cl	N	H	Cl
28.	K ₃ PO ₄	K	P	O
29.	HNO ₃	H	N	O
30.	KNO ₂	K	N	O

Rules for Assigning Oxidation Numbers

1. The oxidation number of any uncombined element is 0.
2. The oxidation number of a monatomic ion equals the charge on the ion.
3. The more-electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
4. The oxidation number of fluorine in a compound is always -1.
5. Oxygen has an oxidation number of -2 unless it is combined with F (when it is +2), or it is in a peroxide (such as H₂O₂ or Na₂O₂), when it is -1.
6. The oxidation state of hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is -1.
7. In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation numbers of +1, +2, and +3 respectively.
8. The sum of the oxidation numbers of all atoms in a neutral compound is 0.
9. The sum of the oxidation numbers of all atoms in a polyatomic ion equals the charge of the ion.