

LINEAR EQUATION EXERCISE 3

Based on the example above, fill in the blank for the following:

Find the value of x for the following:

Q1.

$$\frac{3x - 2}{1 - 2x} = \frac{3}{4}$$

Solution

$$\boxed{} (\boxed{} \boxed{} \boxed{}) = \boxed{} (\boxed{} \boxed{} \boxed{})$$

$$\boxed{} \boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \boxed{} \boxed{} \boxed{}$$

$$\boxed{} = \boxed{}$$

$$\frac{\boxed{}}{\boxed{}} = \frac{\boxed{}}{\boxed{}}$$

$$x = \frac{\boxed{}}{\boxed{}}$$

Q2.

$$\frac{2x + 9}{x - 1} = \frac{4}{5}$$

Solution

$$\boxed{} (\boxed{} \boxed{} \boxed{}) = \boxed{} (\boxed{} \boxed{} \boxed{})$$

$$\boxed{} \boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \boxed{} \boxed{} \boxed{}$$

$$\boxed{} = \boxed{}$$

$$\frac{\boxed{}}{\boxed{}} = \frac{\boxed{}}{\boxed{}}$$

$$x = \frac{\boxed{}}{\boxed{}}$$

Q3.

$$\frac{9x - 1}{10} = \frac{x + 1}{2}$$

Solution

$$\boxed{} (\boxed{} \boxed{} \boxed{}) = \boxed{} (\boxed{} \boxed{} \boxed{})$$

$$\boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \quad \boxed{} \quad \boxed{} \quad \boxed{}$$

$$\boxed{} = \boxed{}$$

$$\frac{\boxed{}}{\boxed{}} = \frac{\boxed{}}{\boxed{}}$$

$$x = \frac{\boxed{}}{\boxed{}} = \frac{\boxed{}}{\boxed{}}$$

Q4.

$$\frac{x + 2}{2 - 3x} = -\frac{3}{4}$$

Solution

$$\boxed{} (\boxed{} \boxed{} \boxed{}) = \boxed{} (\boxed{} \boxed{} \boxed{})$$

$$\boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \boxed{} \boxed{} = \boxed{} \boxed{} \boxed{}$$

$$\boxed{} \quad \boxed{} \quad \boxed{} \quad \boxed{}$$

$$\boxed{} = \boxed{}$$

$$\frac{\boxed{}}{\boxed{}} = \frac{\boxed{}}{\boxed{}}$$

$$x = \frac{\boxed{}}{\boxed{}}$$