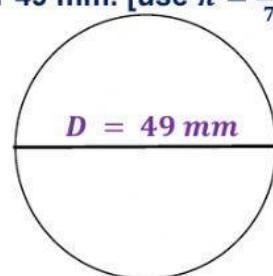


NAME _____ DATE _____

CIRCUMFERENCE AND LENGTH OF ARC


Complete the following by filling in the values.

1. Find the circumference of a circle of diameter 49 mm. [use $\pi = \frac{22}{7}$]

Solution:

Using $C = \pi D$

$$C = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \text{ mm}$$

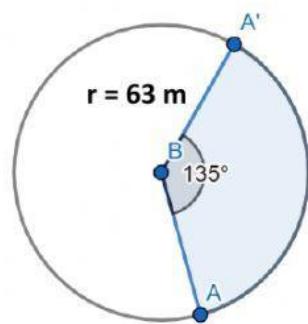
2. Calculate the circumference of a circle given a radius of 21 cm.

Solution

Using $C = 2\pi r$

$$C = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}}$$

$$C = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \text{ cm}$$


3. Calculate the arc length of the sector shown.

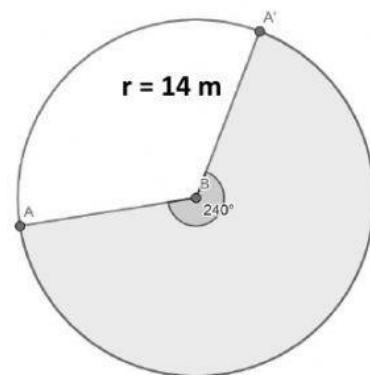
Solution: Using $l = 2\pi r \frac{\theta}{360^\circ}$

$$l = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \frac{\underline{\hspace{2cm}}^\circ}{360^\circ}$$

$$l = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \frac{3}{8} = \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}} \text{ m}$$

4. Calculate the arc length of the sector shown.


[angle = 240°]

Solution: Using $l = 2\pi r \frac{\theta}{360^\circ}$

$$l = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \frac{\underline{\hspace{2cm}}^\circ}{360^\circ}$$

$$l = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \times \frac{2}{3} = \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}} \text{ m}$$

